Rademacher averages and phase transitions in Glivenko-Cantelli classes
نویسنده
چکیده
We introduce a new parameter which may replace the fat-shattering dimension. Using this parameter we are able to provide improved complexity estimates for the agnostic learning problem with respect to any norm. Moreover, we show that if fat ( ) = ( ) then displays a clear phase transition which occurs at = 2. The phase transition appears in the sample complexity estimates, covering numbers estimates, and in the growth rate of the Rademacher averages associated with the class. As a part of our discussion, we prove the best known estimates on the covering numbers of a class when considered as a subset of spaces. We also estimate the fat-shattering dimension of the convex hull of a given class. Both these estimates are given in terms of the fat-shattering dimension of the original class.
منابع مشابه
Online Learning: Random Averages, Combinatorial Parameters, and Learnability
We study learnability in the online learning model. We define several complexity measures which capture the difficulty of learning in a sequential manner. Among these measures are analogues of Rademacher complexity, covering numbers and fat shattering dimension from statistical learning theory. Relationship among these complexity measures, their connection to online learning, and tools for boun...
متن کاملUniform Glivenko–Cantelli Classes
A class of sets, or functions, is said to be P–Glivenko–Cantelli if the empirical measure Pn converges in some sense to the true measure, P , as n → ∞, uniformly over the class of sets or functions. Thus, the notions of Glivenko–Cantelli, and likewise uniform Glivenko–Cantelli are for the most part qualitative assessments of how “well–behaved” a collection of sets or functions is, in the sense ...
متن کاملA Few Notes on Statistical Learning Theory
2 Glivenko-Cantelli Classes 5 2.1 The classical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 The symmetrization procedure . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 Covering numbers and complexity estimates . . . . . . . . . . . . . . 9 2.2 Combinatorial parameters and covering numbers . . . . . . . . . . . . . . . 12 2.2.1 Uniform entropy and the VC dimen...
متن کاملPreservation Theorems for Glivenko-cantelli and Uniform Glivenko-cantelli Classes Aad Van Der Vaart and Jon
We show that the P Glivenko property of classes of functions F1; : : : ;Fk is preserved by a continuous function ' from R k to R in the sense that the new class of functions x! '(f1(x); : : : ; fk(x)); fi 2 Fi; i = 1; : : : ; k is again a Glivenko-Cantelli class of functions if it has an integrable envelope. We also prove an analogous result for preservation of the uniform Glivenko-Cantelli pro...
متن کاملPreservation Theorems for Glivenko-Cantelli and Uniform Glivenko-Cantelli Classes
We show that the P−Glivenko property of classes of functions F1, . . . ,Fk is preserved by a continuous function φ from R to R in the sense that the new class of functions x → φ(f1(x), . . . , fk(x)), fi ∈ Fi, i = 1, . . . , k is again a Glivenko-Cantelli class of functions if it has an integrable envelope. We also prove an analogous result for preservation of the uniform Glivenko-Cantelli prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 48 شماره
صفحات -
تاریخ انتشار 2002